
A New Algorithm for Generating
Quadrilateral Meshes and Its Application to

FE-Based Image Registration

Suneeta Ramaswami Marcelo Siqueira
Rutgers University, USA University of Pennsylvania, USA

rsuneeta@camden.rutgers.edu marcelos@seas.upenn.edu

Tessa Sundaram Jean Gallier
University of Pennsylvania, USA University of Pennsylvania, USA

tessa@mail.med.upenn.edu jean@cis.upenn.edu

James Gee
University of Pennsylvania, USA

gee@rad.upenn.edu

1

Introduction

In this talk we present

Introduction

In this talk we present

• a new algorithm to generate strictly convex quadrangulations of provably small
size of polygonal regions with or without polygonal holes,

Introduction

In this talk we present

• a new algorithm to generate strictly convex quadrangulations of provably small
size of polygonal regions with or without polygonal holes,

• an approach to create quadrilateral meshes from 2D images of the human brain
using our algorithm,

Introduction

In this talk we present

• a new algorithm to generate strictly convex quadrangulations of provably small
size of polygonal regions with or without polygonal holes,

• an approach to create quadrilateral meshes from 2D images of the human brain
using our algorithm,

• and a comparison of the performance of a FE-based image registration method
with respect to distinct input image meshes, including the ones generated by our
algorithm.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 2

The Algorithm

Problem

• Given a bounded polygonal region P with n vertices and h ≥ 0 polygonal holes,
obtain a strictly convex quadrangulation of P.

The Algorithm

Problem

• Given a bounded polygonal region P with n vertices and h ≥ 0 polygonal holes,
obtain a strictly convex quadrangulation of P.

Conversion from a Triangulation

• Obtain a triangulation T of P such that VP ⊆ VT and |T | = P.

• Convert T into a quadrangulation Q of P.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 3

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

• Recall that if VT has m vertices then the number t of triangles of T is
t = 2m+2h−2−mb, where mb ≥ n is the number of vertices on the boundary
of T .

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

• Recall that if VT has m vertices then the number t of triangles of T is
t = 2m+2h−2−mb, where mb ≥ n is the number of vertices on the boundary
of T .

• The quadrangulation Q generated by our algorithm contains VT and at most t+2

more vertices (Steiner points).

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

• Recall that if VT has m vertices then the number t of triangles of T is
t = 2m+2h−2−mb, where mb ≥ n is the number of vertices on the boundary
of T .

• The quadrangulation Q generated by our algorithm contains VT and at most t+2

more vertices (Steiner points).

• The quadrangulation Q generated by our algorithm contains at most 3
2t quadrilat-

erals.

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

• Recall that if VT has m vertices then the number t of triangles of T is
t = 2m+2h−2−mb, where mb ≥ n is the number of vertices on the boundary
of T .

• The quadrangulation Q generated by our algorithm contains VT and at most t+2

more vertices (Steiner points).

• The quadrangulation Q generated by our algorithm contains at most 3
2t quadrilat-

erals.

• The size and time complexity of our algorithm are O(t).

The Algorithm

Our Solution

• We propose an algorithm for the conversion step: Given a triangulation T of P,
obtain a quadrangulation Q of P.

• Recall that if VT has m vertices then the number t of triangles of T is
t = 2m+2h−2−mb, where mb ≥ n is the number of vertices on the boundary
of T .

• The quadrangulation Q generated by our algorithm contains VT and at most t+2

more vertices (Steiner points).

• The quadrangulation Q generated by our algorithm contains at most 3
2t quadrilat-

erals.

• The size and time complexity of our algorithm are O(t).

• The above bounds are better than the ones provided by previous indirect algo-
rithms that also provide theoretical bounds on the size of the output quadrangu-
lation.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 4

The Algorithm

• Build the dual graph G of T .

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 5

The Algorithm

• Build a rooted spanning tree TG of G such that the root of TG is a vertex
corresponding to a triangle of T incident to an edge of the boundary of T .

• We carry out a Breadth-First Search (BFS) on G to obtain TG.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 6

The Algorithm

• Let k be the deepest level of TG, and let Vi (0 ≤ i ≤ k) be the set of vertices
of TG at level i.

1

1

2

2

3

3

3

4

4

5

5

5

6

6

7

7

7

8

8

8

9

10
0

0
1 1

2 2

3 3 3

4 4

5 5 5

6

7

8 8 8

9

6

7 7

10

TG

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 7

The Algorithm

• Our algorithm converts T into a quadrangulation Q of |T | by processing the
sets Vk, Vk−1, . . . , V1, V0 one at a time and in this order. That is, the algorithm
traverses TG per level in a bottom-up fashion.

The Algorithm

• Our algorithm converts T into a quadrangulation Q of |T | by processing the
sets Vk, Vk−1, . . . , V1, V0 one at a time and in this order. That is, the algorithm
traverses TG per level in a bottom-up fashion.

• After processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm removes v from
both TG and Vi.

The Algorithm

• Our algorithm converts T into a quadrangulation Q of |T | by processing the
sets Vk, Vk−1, . . . , V1, V0 one at a time and in this order. That is, the algorithm
traverses TG per level in a bottom-up fashion.

• After processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm removes v from
both TG and Vi.

• From the two statements above, a vertex v in Vi (0 ≤ i ≤ k) must be a leaf by
the time it is processed by the algorithm.

The Algorithm

• Our algorithm converts T into a quadrangulation Q of |T | by processing the
sets Vk, Vk−1, . . . , V1, V0 one at a time and in this order. That is, the algorithm
traverses TG per level in a bottom-up fashion.

• After processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm removes v from
both TG and Vi.

• From the two statements above, a vertex v in Vi (0 ≤ i ≤ k) must be a leaf by
the time it is processed by the algorithm.

• For any vertex v ∈ TG, let par(v) denote the parent of v in TG. When
processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm considers either the
vertex v itself, or the vertices in the subtree of TG rooted at par(v), or the
vertices in the subtree of TG rooted at par(par(v)).

The Algorithm

• Our algorithm converts T into a quadrangulation Q of |T | by processing the
sets Vk, Vk−1, . . . , V1, V0 one at a time and in this order. That is, the algorithm
traverses TG per level in a bottom-up fashion.

• After processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm removes v from
both TG and Vi.

• From the two statements above, a vertex v in Vi (0 ≤ i ≤ k) must be a leaf by
the time it is processed by the algorithm.

• For any vertex v ∈ TG, let par(v) denote the parent of v in TG. When
processing a vertex v in Vi (0 ≤ i ≤ k), the algorithm considers either the
vertex v itself, or the vertices in the subtree of TG rooted at par(v), or the
vertices in the subtree of TG rooted at par(par(v)).

• Initially, every vertex v in TG corresponds to one triangle in T , but as the
algorithm starts traversing and pruning TG, a vertex v in TG can correspond to
either a triangle in T , a non-empty triangle, a degenerate quadrilateral, or a
degenerate pentagon.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 8

The Algorithm

• What is a non-empty triangle? How does it show up?

par(v)

v
v

par(v)

sib(v)
sib(v)

• Note that if v ∈ TG corresponds to a non-empty triangle, then v is a leaf of TG.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 9

The Algorithm

• What is a degenerate quadrilateral? How does it show up?

v

v

par(v)

v

par(v)

s
s

• Note that if v ∈ TG corresponds to a degenerate quadrilateral, then v is either
a leaf or a vertex of degree 2 of TG.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 10

The Algorithm

• What is a degenerate pentagon? How does it show up?

v

v

par(v)

v

par(v)

p p

s s

• Note that if v ∈ TG corresponds to a degenerate pentagon, then v is a leaf of
TG.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 11

The Algorithm

• How does the algorithm process the sets Vk, Vk−1, . . . , V1, V0?

The Algorithm

• How does the algorithm process the sets Vk, Vk−1, . . . , V1, V0?

• Suppose the algorithm is about to process vertex set Vi with 2 ≤ i ≤ k. The
first step is to eliminate ALL LEAVES of TG in Vi ∪ Vi−1 ∪ Vi−2 that correspond
to degenerate quadrilaterals and degenerate pentagons.

The Algorithm

• How does the algorithm process the sets Vk, Vk−1, . . . , V1, V0?

• Suppose the algorithm is about to process vertex set Vi with 2 ≤ i ≤ k. The
first step is to eliminate ALL LEAVES of TG in Vi ∪ Vi−1 ∪ Vi−2 that correspond
to degenerate quadrilaterals and degenerate pentagons.

• If v ∈ (Vi ∪ Vi−1 ∪ Vi−2) is a leaf of TG and it corresponds to a degenerate
quadrilateral, then remove it from both TG and Vi ∪ Vi−1 ∪ Vi−2, and output the
quadrilateral corresponding to v.

The Algorithm

• How does the algorithm process the sets Vk, Vk−1, . . . , V1, V0?

• Suppose the algorithm is about to process vertex set Vi with 2 ≤ i ≤ k. The
first step is to eliminate ALL LEAVES of TG in Vi ∪ Vi−1 ∪ Vi−2 that correspond
to degenerate quadrilaterals and degenerate pentagons.

• If v ∈ (Vi ∪ Vi−1 ∪ Vi−2) is a leaf of TG and it corresponds to a degenerate
quadrilateral, then remove it from both TG and Vi ∪ Vi−1 ∪ Vi−2, and output the
quadrilateral corresponding to v.

• If v ∈ (Vi ∪ Vi−1 ∪ Vi−2) corresponds to a degenerate pentagon (and therefore it
is a leaf of TG), then subdivide this pentagon into a quadrilateral and a leftover
triangle, 4, as shown below, output the quadrilateral, and let v correspond to
4.

v

par(v)

p

s

v

par(v)

p

s

v

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 12

The Algorithm

• The second step is to eliminate ALL LEAVES of TG in Vi that correspond to
non-empty triangles.

The Algorithm

• The second step is to eliminate ALL LEAVES of TG in Vi that correspond to
non-empty triangles.

• If v ∈ Vi corresponds to a non-empty triangle (and therefore it is a leaf of TG),
then we have four cases to deal with:

(2)

v

par(v)

v

v

(3)

(1)

(4)

v vv

par(v) par(v)

par(v)par(v)
par(v)

par(v)

par(v)

v v

sib(v) sib(v)sib(v) sib(v)

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 13

The Algorithm

• In case (1), the algorithm combines the non-empty triangle and the triangle
corresponding to v and par(v), respectively, in order to form a quadrilateral
with an interior vertex:

v

par(v)

v

par(v)
(1)

par(v) par(v)

v v

The Algorithm

• In case (1), the algorithm combines the non-empty triangle and the triangle
corresponding to v and par(v), respectively, in order to form a quadrilateral
with an interior vertex:

v

par(v)

v

par(v)
(1)

par(v) par(v)

v v

• It can be shown that a quadrilateral with a vertex inside it can be decomposed
into five strictly convex quadrilaterals by using three Steiner points.

The Algorithm

• In case (1), the algorithm combines the non-empty triangle and the triangle
corresponding to v and par(v), respectively, in order to form a quadrilateral
with an interior vertex:

v

par(v)

v

par(v)
(1)

par(v) par(v)

v v

• It can be shown that a quadrilateral with a vertex inside it can be decomposed
into five strictly convex quadrilaterals by using three Steiner points.

• After performing the above decomposition and outputting the resulting quadri-
laterals, the algorithm removes v and par(v) from TG and their corresponding
vertex sets.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 14

The Algorithm

• Cases (2), (3) and (4) can be reduced to one or two instances of case (1):

(2)
par(v)

v

par(v)

v

(3)
par(v) par(v)

(4)

v

par(v)
(4)

v v

par(v)
par(v)

(2)

v

par(v)
par(v)

v

v

(3)

v

par(v)
par(v)

sib(v)

sib(v)sib(v)sib(v)

sib(v) sib(v)

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 15

The Algorithm

• After steps 1 and 2, all vertices in Vi correspond to triangles of T , and all
leaves of TG in Vi−1 and Vi−2 correspond to either triangles of T or non-empty
triangles.

The Algorithm

• After steps 1 and 2, all vertices in Vi correspond to triangles of T , and all
leaves of TG in Vi−1 and Vi−2 correspond to either triangles of T or non-empty
triangles.

• The third step processes all vertices v ∈ Vi such that par(v) has two children,
v and its sibling, sib(v).

The Algorithm

• After steps 1 and 2, all vertices in Vi correspond to triangles of T , and all
leaves of TG in Vi−1 and Vi−2 correspond to either triangles of T or non-empty
triangles.

• The third step processes all vertices v ∈ Vi such that par(v) has two children,
v and its sibling, sib(v).

• Since both v and sib(v) correspond to triangles of T , the subtree rooted at
par(v) corresponds to either a triangle with a vertex inside it or a pentagon.

par(v)

v sib(v)

v

sib(v)

v sib(v)

par(v)

PentagonNon−empty triangle

par(v)

• We already know what to do when the subtree rooted at par(v) corresponds to
a triangle with a vertex inside it.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 16

The Algorithm

• If the triangles in T corresponding to v, par(v) and sib(v) form a pentagon
P , then it can be shown that P can be subdivided into two strictly convex
quadrilaterals and one triangle, 4, such that 4 contains the common edge of
par(v) and par(par(v)).

par(v)

v sib(v)

par(v)

• Eliminate vertices v and sib(v) from both TG and Vi, and let par(v) correspond
to the leftover triangle 4.

• When the vertex set Vi−1 is considered, vertex par(v) is processed and the
leftover triangle 4 will be combined with some other triangle(s) to form another
small polygon.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 17

The Algorithm

• After processing all vertices v ∈ Vi such that par(v) has two children, the
algorithm starts the fourth step in which it processes the vertices v ∈ Vi such
that v is the only child of par(v) with 2 ≤ i ≤ k.

The Algorithm

• After processing all vertices v ∈ Vi such that par(v) has two children, the
algorithm starts the fourth step in which it processes the vertices v ∈ Vi such
that v is the only child of par(v) with 2 ≤ i ≤ k.

• If par(v) corresponds to a triangle and this triangle forms a strictly convex
quadrilateral with the triangle corresponding to v, then the algorithm outputs
the quadrilateral and removes both v and par(v) from TG and from their
corresponding vertex sets.

9

10

1

1

2

2

3

3

3

4

4

5

5

5

6

6

7

7

7

8

8

8

9

10
0

10

9

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 18

The Algorithm

• If par(v) corresponds to a degenerate quadrilateral, then this quadrilateral can
be combined with the triangle corresponding to v to form a pentagon P .

The Algorithm

• If par(v) corresponds to a degenerate quadrilateral, then this quadrilateral can
be combined with the triangle corresponding to v to form a pentagon P .

• It can be shown that the pentagon P can be decomposed into two strictly convex
quadrilaterals and one leftover triangle, 4, by adding one Steiner point inside
the degenerate quadrilateral. Furthermore, the triangle 4 contains the common
edge of par(v) and par(par(v)).

par(v)

v
v

par(v) par(v)

The Algorithm

• If par(v) corresponds to a degenerate quadrilateral, then this quadrilateral can
be combined with the triangle corresponding to v to form a pentagon P .

• It can be shown that the pentagon P can be decomposed into two strictly convex
quadrilaterals and one leftover triangle, 4, by adding one Steiner point inside
the degenerate quadrilateral. Furthermore, the triangle 4 contains the common
edge of par(v) and par(par(v)).

par(v)

v
v

par(v) par(v)

• After performing the above decomposition, the algorithm makes par(v) corre-
spond to the leftover triangle 4, removes v from both TG and Vi, and outputs
the resulting quadrilaterals.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 19

The Algorithm

• If both v and par(v) correspond to triangles of T , but these triangles DO NOT
form a strictly convex quadrilateral, we consider the subtree of TG rooted at
par(par(v)).

The Algorithm

• If both v and par(v) correspond to triangles of T , but these triangles DO NOT
form a strictly convex quadrilateral, we consider the subtree of TG rooted at
par(par(v)).

• Up to isomorphism, we only have the following three possible subtrees rooted at
par(par(v)):

par(par(v))

par(v)

vv

par(v)

par(par(v)) par(par(v))

v

par(v)

(1) (2) (3)

The Algorithm

• If both v and par(v) correspond to triangles of T , but these triangles DO NOT
form a strictly convex quadrilateral, we consider the subtree of TG rooted at
par(par(v)).

• Up to isomorphism, we only have the following three possible subtrees rooted at
par(par(v)):

par(par(v))

par(v)

vv

par(v)

par(par(v)) par(par(v))

v

par(v)

(1) (2) (3)

• The trees above correspond to (1) a pentagon or hexagon, (2) a quadrilateral
with one or two vertices inside it, a hexagon, or a hexagon with a vertex inside
it, and (3) a triangle with two vertices inside it, a pentagon with a vertex inside
it, or a septagon.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 20

The Algorithm

• In case (1), if par(par(v)) corresponds to a triangle, then the union of the
triangles corresponding to v, par(v) and par(par(v)) forms a pentagon P .

The Algorithm

• In case (1), if par(par(v)) corresponds to a triangle, then the union of the
triangles corresponding to v, par(v) and par(par(v)) forms a pentagon P .

• It can be shown that the pentagon P can be decomposed into either two strictly
convex quadrilaterals and a leftover triangle or three quadrilaterals.

(1)

par(v)

par(par(v))

v

par(par(v)) par(par(v))

v

par(v)

par(par(v))

The Algorithm

• In case (1), if par(par(v)) corresponds to a triangle, then the union of the
triangles corresponding to v, par(v) and par(par(v)) forms a pentagon P .

• It can be shown that the pentagon P can be decomposed into either two strictly
convex quadrilaterals and a leftover triangle or three quadrilaterals.

(1)

par(v)

par(par(v))

v

par(par(v)) par(par(v))

v

par(v)

par(par(v))

• In the former case, two Steiner points are added, and v and par(v) get removed
from TG and their corresponding vertex sets. In the latter case, three Steiner
points are added and v, par(v) and par(par(v)) get removed from TG and
their corresponding vertex sets.

The Algorithm

• In case (1), if par(par(v)) corresponds to a triangle, then the union of the
triangles corresponding to v, par(v) and par(par(v)) forms a pentagon P .

• It can be shown that the pentagon P can be decomposed into either two strictly
convex quadrilaterals and a leftover triangle or three quadrilaterals.

(1)

par(v)

par(par(v))

v

par(par(v)) par(par(v))

v

par(v)

par(par(v))

• In the former case, two Steiner points are added, and v and par(v) get removed
from TG and their corresponding vertex sets. In the latter case, three Steiner
points are added and v, par(v) and par(par(v)) get removed from TG and
their corresponding vertex sets.

• The algorithm chooses either decomposition based on the position of the edge
shared by the triangles corresponding to par(par(v)) and its parent, if any. If
there is no par(par(par(v))) the latter decomposition is chosen.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 21

The Algorithm

• In case (1), if par(par(v)) corresponds to a degenerate quadrilateral, then the
union of the triangles corresponding to v, par(v) and par(par(v)) forms a
hexagon H.

(1)
v

par(par(v))

par(v)

v

par(v)

par(par(v))

The Algorithm

• In case (1), if par(par(v)) corresponds to a degenerate quadrilateral, then the
union of the triangles corresponding to v, par(v) and par(par(v)) forms a
hexagon H.

(1)
v

par(par(v))

par(v)

v

par(v)

par(par(v))

• It can be shown that the hexagon H can be decomposed into at most four
strictly convex quadrilaterals by adding at most three Steiner points.

The Algorithm

• In case (1), if par(par(v)) corresponds to a degenerate quadrilateral, then the
union of the triangles corresponding to v, par(v) and par(par(v)) forms a
hexagon H.

(1)
v

par(par(v))

par(v)

v

par(v)

par(par(v))

• It can be shown that the hexagon H can be decomposed into at most four
strictly convex quadrilaterals by adding at most three Steiner points.

• After performing the above decomposition, the algorithm removes v, par(v), and
par(par(v)) from TG and from their corresponding vertex sets.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 22

The Algorithm

• In case (2), if either the triangle corresponding to v or the triangle corresponding
to par(v) shares an edge with the triangle corresponding to sib(par(v)), the
subtree rooted at par(par(v)) corresponds to a quadrilateral Q with one or two
vertices inside it.

(2)
v

par(v)

sib(par(v))

v

par(par(v))

v

par(par(v))

sib(par(v))par(v)par(v)

par(par(v))

The Algorithm

• In case (2), if either the triangle corresponding to v or the triangle corresponding
to par(v) shares an edge with the triangle corresponding to sib(par(v)), the
subtree rooted at par(par(v)) corresponds to a quadrilateral Q with one or two
vertices inside it.

(2)
v

par(v)

sib(par(v))

v

par(par(v))

v

par(par(v))

sib(par(v))par(v)par(v)

par(par(v))

• The number of vertices inside Q is determined by the entity corresponding to
sib(par(v)): it is one vertex if sib(par(v)) corresponds to a triangle and two
vertices if it corresponds to a non-empty triangle.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 23

The Algorithm

• If there is only one vertex inside Q, it can be shown that Q can be decomposed
into at most five strictly convex quadrilaterals by adding at most three Steiner
points. Otherwise, Q can be decomposed into at most nine strictly convex
quadrilaterals by adding at most six Steiner points.

The Algorithm

• If there is only one vertex inside Q, it can be shown that Q can be decomposed
into at most five strictly convex quadrilaterals by adding at most three Steiner
points. Otherwise, Q can be decomposed into at most nine strictly convex
quadrilaterals by adding at most six Steiner points.

• In either case, the vertices v, par(v), sib(par(v)), and par(par(v)) get
removed from TG and their corresponding vertex sets.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 24

The Algorithm

• In case (2), if neither the triangle corresponding to v nor the triangle correspond-
ing to par(v) shares an edge with the triangle corresponding to sib(par(v)),
the subtree rooted at par(par(v)) corresponds to either a hexagon or a hexagon
with a vertex inside it.

(2)
v

par(v)

v

par(v)

sib(par(v))

par(par(v))

sib(par(v))

par(par(v))

The Algorithm

• In case (2), if neither the triangle corresponding to v nor the triangle correspond-
ing to par(v) shares an edge with the triangle corresponding to sib(par(v)),
the subtree rooted at par(par(v)) corresponds to either a hexagon or a hexagon
with a vertex inside it.

(2)
v

par(v)

v

par(v)

sib(par(v))

par(par(v))

sib(par(v))

par(par(v))

• The former case can be reduced to case (1) (with par(par(v)) being a degen-
erate quadrilateral), and the latter case is analogous to the case in which the
subtree rooted at par(par(v)) corresponds to a quadrilateral with two vertices
inside it.

The Algorithm

• In case (2), if neither the triangle corresponding to v nor the triangle correspond-
ing to par(v) shares an edge with the triangle corresponding to sib(par(v)),
the subtree rooted at par(par(v)) corresponds to either a hexagon or a hexagon
with a vertex inside it.

(2)
v

par(v)

v

par(v)

sib(par(v))

par(par(v))

sib(par(v))

par(par(v))

• The former case can be reduced to case (1) (with par(par(v)) being a degen-
erate quadrilateral), and the latter case is analogous to the case in which the
subtree rooted at par(par(v)) corresponds to a quadrilateral with two vertices
inside it.

• In either case, the v, par(v), sib(par(v)), and par(par(v)) get removed from
TG and their corresponding vertex sets.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 25

The Algorithm

• In case (3), if the triangles corresponding to v and par(v), or only one of
them, are adjacent to both the triangles corresponding to sib(par(v)) and its
child, then the subtree rooted at par(par(v)) corresponds to a triangle with two
vertices inside it.

par(v)

par(par(v))

sib(par(v))

v
w

par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))par(v)

v w

par(v)

sib(par(v))

v
w

The Algorithm

• In case (3), if the triangles corresponding to v and par(v), or only one of
them, are adjacent to both the triangles corresponding to sib(par(v)) and its
child, then the subtree rooted at par(par(v)) corresponds to a triangle with two
vertices inside it.

par(v)

par(par(v))

sib(par(v))

v
w

par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))par(v)

v w

par(v)

sib(par(v))

v
w

• As shown in the above figure, we can deal with this case by considering the
quadrilateral with one vertex inside it, which corresponds to the vertices v,
par(v), sib(par(v)) and the child of sib(par(v)).

The Algorithm

• In case (3), if the triangles corresponding to v and par(v), or only one of
them, are adjacent to both the triangles corresponding to sib(par(v)) and its
child, then the subtree rooted at par(par(v)) corresponds to a triangle with two
vertices inside it.

par(v)

par(par(v))

sib(par(v))

v
w

par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))par(v)

v w

par(v)

sib(par(v))

v
w

• As shown in the above figure, we can deal with this case by considering the
quadrilateral with one vertex inside it, which corresponds to the vertices v,
par(v), sib(par(v)) and the child of sib(par(v)).

• We already know how to deal with a quadrilateral with a vertex inside it.

The Algorithm

• In case (3), if the triangles corresponding to v and par(v), or only one of
them, are adjacent to both the triangles corresponding to sib(par(v)) and its
child, then the subtree rooted at par(par(v)) corresponds to a triangle with two
vertices inside it.

par(v)

par(par(v))

sib(par(v))

v
w

par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))par(v)

v w

par(v)

sib(par(v))

v
w

• As shown in the above figure, we can deal with this case by considering the
quadrilateral with one vertex inside it, which corresponds to the vertices v,
par(v), sib(par(v)) and the child of sib(par(v)).

• We already know how to deal with a quadrilateral with a vertex inside it.

• The vertices v, par(v), sib(par(v)) and the child of sib(par(v)) get removed
from TG and from their corresponding vertex sets.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 26

The Algorithm

• In case (3), if the triangle corresponding to v (resp. par(v)) has only one edge
in common with either sib(par(v)) or its child, and the triangle corresponding to
par(v) (resp. v) shares no edge with sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a pentagon P with one vertex inside it.

par(par(v))

par(v)

v w

sib(par(v))

v

par(par(v))
sib(par(v))

w

par(v)

The Algorithm

• In case (3), if the triangle corresponding to v (resp. par(v)) has only one edge
in common with either sib(par(v)) or its child, and the triangle corresponding to
par(v) (resp. v) shares no edge with sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a pentagon P with one vertex inside it.

par(par(v))

par(v)

v w

sib(par(v))

v

par(par(v))
sib(par(v))

w

par(v)

• It can be shown that the pentagon P can be decomposed into at most four
strictly convex quadrilaterals and a leftover triangle, 4, by adding at most
three Steiner points inside P . The leftover triangle 4 contains the edge of
par(par(v)) that is not adjacent to par(v) nor to sib(par(v)).

The Algorithm

• In case (3), if the triangle corresponding to v (resp. par(v)) has only one edge
in common with either sib(par(v)) or its child, and the triangle corresponding to
par(v) (resp. v) shares no edge with sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a pentagon P with one vertex inside it.

par(par(v))

par(v)

v w

sib(par(v))

v

par(par(v))
sib(par(v))

w

par(v)

• It can be shown that the pentagon P can be decomposed into at most four
strictly convex quadrilaterals and a leftover triangle, 4, by adding at most
three Steiner points inside P . The leftover triangle 4 contains the edge of
par(par(v)) that is not adjacent to par(v) nor to sib(par(v)).

• The algorithm removes v, par(v), sib(par(v)) and the child of sib(par(v)) from
TG and from their corresponding vertex sets, and makes par(par(v)) correspond
to 4.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 27

The Algorithm

• In case (3), if neither the triangle corresponding to v nor the one corresponding
to par(v) shares an edge with neither sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a septagon S.

sib(par(v))

par(v)

w
v

par(par(v))
par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))

par(par(v))
par(par(v))

par(v)

v w

The Algorithm

• In case (3), if neither the triangle corresponding to v nor the one corresponding
to par(v) shares an edge with neither sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a septagon S.

sib(par(v))

par(v)

w
v

par(par(v))
par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))

par(par(v))
par(par(v))

par(v)

v w

• It can be shown that the septagon S can be decomposed into at most six strictly
convex quadrilaterals and a leftover triangle, 4, by adding at most four Steiner
points inside S.

The Algorithm

• In case (3), if neither the triangle corresponding to v nor the one corresponding
to par(v) shares an edge with neither sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a septagon S.

sib(par(v))

par(v)

w
v

par(par(v))
par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))

par(par(v))
par(par(v))

par(v)

v w

• It can be shown that the septagon S can be decomposed into at most six strictly
convex quadrilaterals and a leftover triangle, 4, by adding at most four Steiner
points inside S.

• The leftover triangle 4 contains the edge of par(par(v)) that is not adjacent
to par(v) nor to sib(par(v)).

The Algorithm

• In case (3), if neither the triangle corresponding to v nor the one corresponding
to par(v) shares an edge with neither sib(par(v)) nor its child, then the subtree
rooted at par(par(v)) corresponds to a septagon S.

sib(par(v))

par(v)

w
v

par(par(v))
par(par(v))

par(v)

v w

sib(par(v)) sib(par(v))

par(par(v))
par(par(v))

par(v)

v w

• It can be shown that the septagon S can be decomposed into at most six strictly
convex quadrilaterals and a leftover triangle, 4, by adding at most four Steiner
points inside S.

• The leftover triangle 4 contains the edge of par(par(v)) that is not adjacent
to par(v) nor to sib(par(v)).

• The algorithm removes v, par(v), sib(par(v)) and the child of sib(par(v)) from
TG and from their corresponding vertex sets, and makes par(par(v)) correspond
to 4.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 28

The Algorithm

• After processing all vertices v ∈ Vi such that par(v) has only one child, the
algorithm starts the fifth and last step in which it processes the vertex sets V1

and V0.

v

par(v)

par(v)

v sib(v)

v

The Algorithm

• After processing all vertices v ∈ Vi such that par(v) has only one child, the
algorithm starts the fifth and last step in which it processes the vertex sets V1

and V0.

v

par(v)

par(v)

v sib(v)

v

• By carefully analyzing all previous cases, it can be shown that the algorithm
generates at most b3

2tc strictly convex quadrilaterals and uses at most t + 2

Steiner points, where t is the number of triangles in T . Furthermore, its time
and space complexity are O(t).

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 29

Constrained Quadrangulations

• Our algorithm can be extended in a straightforward manner to deal with arbitrary
constrained triangulations.

Constrained Quadrangulations

• Our algorithm can be extended in a straightforward manner to deal with arbitrary
constrained triangulations.

• Given a constrained triangulation T , build the dual graph G of T respecting the
constrained edges of T . That is, the graph G does not contain the dual edges
of constrained edges of T .

Constrained Quadrangulations

• Our algorithm can be extended in a straightforward manner to deal with arbitrary
constrained triangulations.

• Given a constrained triangulation T , build the dual graph G of T respecting the
constrained edges of T . That is, the graph G does not contain the dual edges
of constrained edges of T .

• Suppose that G has c connected components. Then, build the spanning forest
T = {T1, T2, . . . , Tc} of G and run our algorithm on each Ti.

Constrained Quadrangulations

• Our algorithm can be extended in a straightforward manner to deal with arbitrary
constrained triangulations.

• Given a constrained triangulation T , build the dual graph G of T respecting the
constrained edges of T . That is, the graph G does not contain the dual edges
of constrained edges of T .

• Suppose that G has c connected components. Then, build the spanning forest
T = {T1, T2, . . . , Tc} of G and run our algorithm on each Ti.

• The number of quadrilaterals generated by the algorithm is at most b3
2tc+5c− 5

and the number of Steiner points is at most t + 4c− 3.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 30

Implementation and Results

• We have an implementation of a slightly different version of this algorithm at

http://www.seas.upenn.edu/~marcelos/cqmesh.html

Implementation and Results

• We have an implementation of a slightly different version of this algorithm at

http://www.seas.upenn.edu/~marcelos/cqmesh.html

• We have noticed that our algorithm generates about 0.6t quadrilaterals in most
test cases, where t is the number of triangles of the input triangulation.

• Our algorithm tends to preserve the input mesh grading.

• We have noticed that the better the shape of the input triangles is, the better
the shape of the output quadrilaterals.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 31

Implementation and Results

• Our algorithm does not give any guarantee on the quality of the shape of mesh
elements.

Implementation and Results

• Our algorithm does not give any guarantee on the quality of the shape of mesh
elements.

• Post-processing techniques (such as smoothing and topological improvements)
should be used to increase mesh quality at the expenses of running time and
mesh size.

Implementation and Results

• Our algorithm does not give any guarantee on the quality of the shape of mesh
elements.

• Post-processing techniques (such as smoothing and topological improvements)
should be used to increase mesh quality at the expenses of running time and
mesh size.

• The mesh on the right was obtained from the mesh on the left by using angle-
based smoothing and topological clean-up.

• The mesh on the right has about 10% more elements than the one on the left.
The time to post-process the mesh on the right was 9 times longer than the one
taken by our algorithm to generate the mesh on the left.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 32

Meshes from Images

• Image Segmentation

• Contour definition

• Polygonal approximation of contours

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 33

Image registration

• The process of finding a spatial correspondence between two images.

• Elastic image registration (Broit, 1981)

• Variational formulation (Gee and Bajcsy, 1999)

• FE-based implementation of Gee and Bajcsy's registration method in the NLM
Insight Segmentation and Registration Toolkit (ITK).

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 34

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

• Image B is a deformation of image A produced by a cubic polynomial.

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

• Image B is a deformation of image A produced by a cubic polynomial.

• Image B was partitioned using triangular meshes, quadrilateral grids, and quadri-
lateral meshes generated by our new algorithm.

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

• Image B is a deformation of image A produced by a cubic polynomial.

• Image B was partitioned using triangular meshes, quadrilateral grids, and quadri-
lateral meshes generated by our new algorithm.

• Triangular meshes produced by the software ``Triangle'' by Jonathan Shewchuk
(www-2.cs.cmu.edu/~quake/triangle.html).

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

• Image B is a deformation of image A produced by a cubic polynomial.

• Image B was partitioned using triangular meshes, quadrilateral grids, and quadri-
lateral meshes generated by our new algorithm.

• Triangular meshes produced by the software ``Triangle'' by Jonathan Shewchuk
(www-2.cs.cmu.edu/~quake/triangle.html).

• FEM-based image registration code from ITK.

Image Registration Experiment

• One pair (A, B) of 256× 256 pixel MR images.

• Image B is a deformation of image A produced by a cubic polynomial.

• Image B was partitioned using triangular meshes, quadrilateral grids, and quadri-
lateral meshes generated by our new algorithm.

• Triangular meshes produced by the software ``Triangle'' by Jonathan Shewchuk
(www-2.cs.cmu.edu/~quake/triangle.html).

• FEM-based image registration code from ITK.

• We evaluate the results of the registration by calculating the RMS (root-mean
squared) difference between the intensity values of corresponding pixels over the
entire image domain.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 35

Performance Measurements

Mesh Description #Elements #Vertices

1 Triangular with minimum angle of 20 degrees 2921 1472
2 Triangular with minimum angle of 25 degrees 3549 1790
3 Triangular with minimum angle of 30 degrees 4914 2481
4 Triangular with minimum angle of 33 degrees 8254 4173
5 Quadrilateral grid of 8x8-pixel elements 1024 1089
6 Quadrilateral grid of 4x4-pixel elements 4096 4225
7 Quadrilateral grid of 2x2-pixel elements 16384 16641
8 Quadrilateral grid of 1x1-pixel elements 65536 66049
9 Quadrilateral mesh from triangular mesh 1 1645 1654
10 Quadrilateral mesh from triangular mesh 2 1941 1957
11 Quadrilateral mesh from triangular mesh 3 2581 2605
12 Quadrilateral mesh from triangular mesh 4 4318 4364
13 Quadrilateral mesh 9 after post-processing 1773 1785
14 Quadrilateral mesh 10 after post-processing 2073 2089
15 Quadrilateral mesh 11 after post-processing 2747 2771
16 Quadrilateral mesh 12 after post-processing 4499 4545

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 36

Performance Measurements

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

N
um

be
r o

f e
le

m
en

ts

Mesh

1 2 3 4

9 10 11 12 13 14 15 16

Triangular meshes
Quadrilateral meshes

Postprocessed quadrilateral meshes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

N
um

be
r o

f n
od

es

Mesh

1 2 3 4 9 10 11 12 13 14 15 16

Triangular meshes
Quadrilateral meshes

Post-processed quadrilateral meshes

• Number of elements in the brain meshes generated by our algorithm is about
60% of the number of elements in their triangular counterparts.

• Number of vertices in the brain meshes generated by our algorithm is slightly
bigger than the number of vertices in their triangular counterparts.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 37

Performance Measurements

Mesh #Elements Int. Pts. Runtime (sec.) RMS

1 2921 1 10 17.95
1 2991 3 17 17.25
2 3549 1 12 17.35
2 3549 3 21 16.98
3 4914 1 17 17.20
3 4914 3 30 16.81
4 8254 1 32 16.78
4 8254 3 52 16.62
5 1024 4 12 18.56
6 4096 4 46 16.99
7 16384 4 205 16.11
8 65536 4 1001 15.93
9 1645 4 21 17.67
10 1941 4 24 17.12
11 2581 4 33 16.93
12 4318 4 59 16.68
13 1773 4 23 17.44
14 2073 4 27 17.47
15 2747 4 35 16.92
16 4499 4 62 16.66

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 38

Performance Measurements

 16

 16.5

 17

 17.5

 18

 18.5

 19

R
M

S

Mesh

4,12,161,9,13 3,11,152,10,14

Triangular meshes and 1 integration point
Triangular meshes and 3 integration points

Quadrilateral meshes and 4 integration points
Post-processed quadrilateral meshes and 4 integration points

• Even though the number of elements of the quadrilaterals meshes generated
by our algorithm is about 60% of the number of elements in their triangular
counterparts, the RMS's due to the quadrilateral meshes are comparable with the
ones of their triangular counterparts.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 39

Performance Measurements

 0

 10

 20

 30

 40

 50

 60

 70

 80

R
un

tim
e

(s
ec

on
ds

)

Mesh

1,9,13 2,10,14 3,11,15 4,12,16

Triangular meshes and 1 integration point
Triangular meshes and 3 integration points

Quadrilateral meshes and 4 integration points
Post-processed quadrilateral meshes and 4 integration points

• Runtime associated with the quadrilateral meshes are larger than the ones asso-
ciated with the triangular meshes.

• Brain meshes 11 and 15, which are generated by our algorithm, have less than 3
4

of the number of elements of mesh 6 (a uniform grid) and yet they both have a
smaller RMS associated with them.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 40

Conclusions

• We developed an algorithm to generate quadrilateral meshes of arbitrary polygonal
regions with or without holes.

Conclusions

• We developed an algorithm to generate quadrilateral meshes of arbitrary polygonal
regions with or without holes.

• Our algorithm is provably guaranteed to generate quadrangulateral meshes of
bounded size and its bounds are better than the ones provided by similar
algorithms using the indirect approach.

Conclusions

• We developed an algorithm to generate quadrilateral meshes of arbitrary polygonal
regions with or without holes.

• Our algorithm is provably guaranteed to generate quadrangulateral meshes of
bounded size and its bounds are better than the ones provided by similar
algorithms using the indirect approach.

• Our algorithm is simpler and faster than most of the algorithms for generating
quadrilateral meshes with high quality element shape, and it can be a reasonable
choice if element shape quality is not an issue.

Conclusions

• We developed an algorithm to generate quadrilateral meshes of arbitrary polygonal
regions with or without holes.

• Our algorithm is provably guaranteed to generate quadrangulateral meshes of
bounded size and its bounds are better than the ones provided by similar
algorithms using the indirect approach.

• Our algorithm is simpler and faster than most of the algorithms for generating
quadrilateral meshes with high quality element shape, and it can be a reasonable
choice if element shape quality is not an issue.

• We applied our algorithm to generate quadrilateral meshes from imaging data,
and then evaluate mesh quality with respect to the performance of a FE-based
image registration method implemented in ITK.

Conclusions

• We developed an algorithm to generate quadrilateral meshes of arbitrary polygonal
regions with or without holes.

• Our algorithm is provably guaranteed to generate quadrangulateral meshes of
bounded size and its bounds are better than the ones provided by similar
algorithms using the indirect approach.

• Our algorithm is simpler and faster than most of the algorithms for generating
quadrilateral meshes with high quality element shape, and it can be a reasonable
choice if element shape quality is not an issue.

• We applied our algorithm to generate quadrilateral meshes from imaging data,
and then evaluate mesh quality with respect to the performance of a FE-based
image registration method implemented in ITK.

• Our evaluation has shown that our meshes are comparable with their triangular
counterparts, and they are slightly better than the uniform grids automatically
provided by ITK.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 41

Future Work

• We would like to investigate and formalize the relationship between the quality
of input triangulation (in terms of angle bounds, for instance) and the quality of
the quadrilateral mesh produced by our algorithm.

Future Work

• We would like to investigate and formalize the relationship between the quality
of input triangulation (in terms of angle bounds, for instance) and the quality of
the quadrilateral mesh produced by our algorithm.

• We also intend to extend our image registration experiment to include an ad-
vancing front method that generates quadrilateral meshes.

Future Work

• We would like to investigate and formalize the relationship between the quality
of input triangulation (in terms of angle bounds, for instance) and the quality of
the quadrilateral mesh produced by our algorithm.

• We also intend to extend our image registration experiment to include an ad-
vancing front method that generates quadrilateral meshes.

• Finally, we would like to extend our algorithm to build three-dimensional quadri-
lateral meshes from imaging data. One possibility is to start with a ``reconstruc-
tion from slices'' approach.

The 12th International Meshing Roundtable, Santa Fe, New Mexico, USA, September 14-17, 2003 42

